

# **ADVANCES IN NANOTECHNOLOGY & GREEN CHEMISTRY**

Sanjeev K. Manohar
DEPARTMENT OF CHEMICAL ENGINEERING

# **Research in Frontier Materials**

Our research is in the synthesis and characterization of materials exhibiting novel and unexpected properties with application in anotechnology, biotechnology, and sustainable engineering and chemistry. Lines of inquiry include:

- Sensors for detecting chemical warfare agents using soft nanotechnology (carbon nanotubes, graphene and conducting polymers).
- Synthesis and characterization of nanostructured materials using green chemistry approaches.
- Sensors for detecting endotoxins and biological threat agents.
- Conversion of waste cellulose to biodegradable plastics.

www.frontiermaterials.net

# Sensors Using Ink-Jet Printed Graphene



Developed a new green chemistry method to synthesize graphene, including the construction of a flexible, chemical warfare agent detector.

# **Research Outputs:**

- 1. Publication: Angewandte Chemie 49 2154 (2010).
- 2. Patent: Provisional application filed (2010).
- 3. Collaboration: Prof. Rodney Ruoff, Univ Texas Austin

# **Conducting Polymer Nanoclips**



New method to synthesize conducting polymers in the form of nanosized clips using a very simple, water-based oxidative approach.

# **Research Outputs:**

- 1. <u>Publication</u>: Journal of the American Chemical Society 132, 13158 (2010).
- 2. Collaboration: Prof. Xinyu Zhang, Auburn University.

# **Green Synthesis & Lead-Free Soldering**



Developed a new green chemistry method to synthesize a nanostructured conducting polymer surface finish for lead free electronics.

#### **Research Outputs:**

- 1. Publication: Green Chemistry 12 585 (2010).
- 2. Collaboration: Benchmark Electronics, TURI.
- 3. Award: TURI, and citations form MA State House

# **Green Synthesis of Synthetic Metals**



Developed a new green chemistry method to synthesize nanostructured conducting polymers using hydrogen peroxide (no toxic byproducts).

#### Research Output:

1. <u>Publication</u>: **Journal of the American Chemical Society 131** 12528 (2009).

# Polyaniline: A Warfare Agent Sensor



Described a new method to detect highly oxidizing and toxic vapors like nitrogen dioxide using a conducting polymer film (chemiresistor).

#### Research Output:

1. <u>Publication</u>: **Sensors and Actuators B 143** 454 (2009).

#### **Nanofiber Growth Puzzle Solved**



Uncovered evidence for a new mechanism for nanofiber formation in conducting polymers. Solves a 10 year old puzzle in polymer chemistry.

#### Research Output:

1. Publication: Macromolecules 42 1792 (2009).

# Polythiophene: A Warfare Agent Sensor



Described a new method to detect chemical warfare agent vapors using thin films of the conducting polymer polythiophene as the main sensing element.

# Research Output:

1. Publication: Macromolecules 42 5414 (2009).

# **Colorful Polyaniline: Solvatochromism**



Described the origins of an unusual phenomenon in polyaniline, i.e., polymers display different colors in different solvents.

# Research Outputs:

- 1. Publication: Synthetic Metals 159 2153 (2009).
- 2. Cover: Work featured on the cover of journal.

#### **Flexible Plastic Transistors**



Fabricated a flexible, all-organic transistor device made using the conducting polymer polyaniline.

#### Research Outputs:

 Publication: Journal of Applied Physics 103 194501 (2008).

# **Explosives Vapor Sensors**



Uncovered a new chemiresistor material based on conducting polymers and carbon nanotubes that can detect explosives in air.

#### Research Output:

1. Invention Disclosures: Six disclosures filed in 2010.

#### **Next Generation Endotoxin Sensors**



Developed a new method to detect endotoxins in the bloodstream using functionalized carbon nanotubes, and conducting polymers.

#### Research Output:

1. Invention Disclosures: Two disclosures filed in 2010.

This work was supported by the University of Massachusetts Lowell Nanomanufacturing Center of Excellence (NCOE), NSF-funded Center for High-rate Nanomanufacturing (CHN, NSF award #0425826), The Massachusetts Center for Biomanufacturing and the Green Technology Laboratory.